|
Особенности устройства электронных ламп |
|
Анод лампы принимает на себя поток электронов. Происходит электронная бомбардировка анода, от которой он нагревается. Кроме того, анод нагревается от теплового излучения катода, В установившемся режиме количество теплоты, выделяющееся на аноде, равно количеству теплоты, отводимому от анода. Важно, чтобы анод не нагревался выше предельной температуры. При перегреве из анода могут выделяться газы, и тогда ухудшается вакуум. Возможно даже расплавление анода от чрезмерного перегрева. Кроме того, раскаленный анод испускает тепловые лучи, которые могут вызвать перегрев катода. У ламп малой мощности и большинства ламп средней мощности анод имеет лучистое охлаждение. Теплота отводится излучением анода. Для усиления теплового излучения увеличивают площадь поверхности анода (часто снабжают ребрами) и делают ее черной или матовой. В лампах средней и большой мощности иногда применяется принудительное охлаждение потоком воздуха. Вывод анода снабжается радиатором, который обдувается вентилятором. У ламп большой мощности применяется также принудительное охлаждение анода проточной водой. Различные конструкции сеток (цилиндрическая, плоская и др.) показаны на рис. 1. ![]() ![]() ![]() ![]() Рис. 1 - Конструкция сеток в триоде Работа ламп ухудшается, если сетка, нагреваясь от накаленного катода, начинает испускать термоэлектроны. Для устранения этого явления проводники сетки покрывают слоем металла с большой работой выхода, например золота. Чтобы эффективно управлять электронным потоком, сетку располагают очень близко к катоду. Вакуум в лампах необходим, прежде всего, потому, что накаленный катод при наличии воздуха сгорит. Кроме того, молекулы газов не должны мешать свободному полету электронов. Высокий вакуум в лампах характеризуется давлением менее 100 мкПа. Если вакуум недостаточный, то летящие электроны ударяют в молекулы газов и превращают их в положительные ионы, которые бомбардируют и разрушают катод. Ионизация газов увеличивает также инерционность и нестабильность работы лампы и создает дополнительные шумы1. Предварительную откачку воздуха производят форвакуумными насосами, затем продолжают высоковакуумными насосами. Кроме того, обезгаживают электроды путем нагрева их до красного каления. Лампу помещают в переменное магнитное поле, индуцирующее в электродах вихревые токи, которые разогревают металл. Для улучшения вакуума в лампу помещают газопоглотитель (геттер), например кусочек магния или бария. При разогреве лампы указанным выше индукционным способом газопоглотитель испаряется и после охлаждения оседает на стекле баллона, покрывая его зеркальным слоем (магний) или коричневато-черным (барий). Этот слой поглощает газы, которые могут выделиться из электродов в процессе работы лампы. Размеры баллона лампы зависят от ее мощности. Чтобы температура баллона не стала недопустимо высокой, увеличивают площадь его поверхности. Наиболее часто применяют стеклянные баллоны, но у керамических значительно выше термостойкость и механическая прочность. Металлические (стальные) баллоны имеют большую прочность и обеспечивают хорошее экранирование лампы от внешних электрических и магнитных полей. Но они сильно нагреваются, и это приводит к перегреву электродов. В последние годы выпуск ламп с металлическими баллонами прекращен. В лампах старого типа электроды укреплены на стеклянной ножке в виде трубки, сплющенной на одном конце (рис. 2, а). В эту ножку впаяны проволочки из металла, имеющего одинаковый со стеклом температурный коэффициент расширения. Концы выводных проволочек приварены к проводникам, идущим к контактным штырькам цоколя. Держатели электродов крепятся в слюдяных или керамических пластинах - изоляторах, благодаря чему фиксируется расстояние между электродами (рис. 2, б).
Рис. 2 - Крепление электродов и их выводов в стеклянных лампах У ламп пальчиковой серии и ряда других электроды монтируются на плоской ножке, представляющей собой утолщенное стеклянное основание баллона. В ножку впаяны проводники (рис. 2, в), которые снаружи выполняют роль контактных штырьков, а внутри лампы являются держателями электродов. Катод прямого накала обычно натягивается с помощью пружинки (рис. 2, г), чтобы он не провисал при удлинении от нагрева. В лампах имеются еще некоторые вспомогательные детали. К ним относятся держатели для геттера, электростатические экраны, устраняющие емкостные токи между отдельными частями лампы или защищающие лампу от воздействия внешних электрических полей. Особое внимание уделяется точности сборки и прочности крепления электродов. Но все же существует разброс электрических свойств между отдельными экземплярами ламп данного типа. Он объясняется неоднородностью деталей, их случайными деформациями при сборке, неточностью сборки, неодинаковостью эмиссии катодов у различных экземпляров ламп и другими причинами. Система выводов от электродов, служащая для подключения лампы к схеме, называется цоколевкой лампы. Стеклянные лампы с цоколем имеют восемь штырьков, расположенных в вершинах правильного восьмиугольника (рис. 3, а). В центре цоколя находится ключ, т. е. более длинный штырек с выступом, обеспечивающий правильную установку лампы. Штырьки принято нумеровать по часовой стрелке от выступа на ключе. Электростатический экран, имеющийся внутри некоторых ламп, соединен с одним из штырьков. У различных ламп электроды соединяются с Разными штырьками. Схемы цоколевки приводятся в справочниках.
Рис. 3 - Цоколевка ламп При анодных напряжениях в сотни вольт все электроды имеют выводы на цоколь. А у ламп на напряжения в тысячи вольт вывод анода часто находится наверху баллона. Выводы электродов у пальчиковых ламп сделаны в виде семи, или девяти, или десяти заостренных проводников, впаянных в плоскую ножку и расположенных соответственно в вершинах правильного многоугольника (рис. 3, б). Сверхминиатюрные бесцокольные лампы имеют выводы от электродов в виде проволочек. У мощных ламп выводы от электродов часто делают в разных местах баллона и на удалении друг от друга, так как напряжения между этими выводами могут быть значительными.
|
Новости: 25.01.2009 Новый раздел!28.11.2008 Новый раздел26.11.2008 Изменение адресов |
copyright © 2003-2021 naf-st.ru, info@naf-st.ru При полном, либо частичном цитировании материалов сайта naf-st.ru ссылка (для интернет изданий гиперссылка) обязательна!!! Будьте взаимовежливы! |