naf-st.ru naf-st.ru naf-st.ru naf-st.ru
 
Поиск по сайту
 

Виды пайки


Пайка К содержанию Первый раз с паяльником
Page copy protected against web site content infringement by Copyscape

Пайка волной припоя

Пайка волной припоя появилась лет 30 назад и в настоящее время достаточно хорошо освоена. Предпочтение этому виду пайки отдается при сборке печатных плат с компонентами, монтируемыми в отверстия). При этом ряд европейских производителей с успехом пользуется данной методикой для сборки плат по SMT технологии.

Процесс пайки достаточно прост: платы, установленные на транспортере, подвергаются предварительному нагреву, чтобы исключить тепловой удар на этапе пайки. Затем плата проходит над волной припоя. Сама волна, ее форма и динамические характеристики являются наиболее важными параметрами оборудования для пайки. С помощью сопла можно менять форму волны. Раньше в конструкциях установок для пайки применялись симметричные волны. Ну а теперь каждый производитель использует свою собственную форму волны, например Z-образную, или Т-образную. Направление и скорость движения потока припоя, достигающего платы, также могут изменяться, но они должны быть одинаковы по всей ширине волны. Угол наклона транспортера для плат тоже регулируется. Некоторые установки для пайки оборудуются дешунтирующим воздушным ножом, который обеспечивает уменьшение количества перемычек припоя. Нож располагается сразу же за участком прохождения волны припоя и включается в работу, когда припой находится еще в расплавленном состоянии на коммутационной плате. Узкий поток нагретого воздуха, движущийся с высокой скоростью, уносит с собой излишки припоя, тем самым, разрушая перемычки и способствуя удалению остатков припоя.

Когда впервые появились коммутационные платы, с обратной стороны которых компоненты устанавливались на поверхность, их пайка производилась волной припоя. При этом возникло множество проблем, связанных как конструкцией плат, так и с особенностями процесса пайки. А именно: непропаи и отсутствие галтелей припоя из-за эффекта затенения выводов компонента другими компонентами, преграждающими доступ волны припоя к соответствующим контактным площадкам, а также наличие полостей с захваченными газообразными продуктами разложения флюса, мешающих дозировке припоя.

Совершенствование конструкции платы оказалось недостаточным для достижения высокого уровня годных при традиционных способах изготовления изделий с простыми компонентами, монтируемыми на поверхность обратной стороны плат. Потребовалось изменить технологический процесс пайки волной, внедрив вторую волну припоя. Первая волна делается турбулентной и узкой, она исходит из сопла под большим давлением (рис. 1). Турбулентность и высокое давление потока припоя исключает формирование полостей с газообразными продуктами разложения флюса. Однако турбулентная волна все же образует перемычки припоя, которые разрушаются второй, более пологой ламинарной волной с малой скоростью истечения. Вторая волна обладает очищающей способностью и устраняет перемычки припоя, а также завершает формирование галтелей. Для обеспечения эффективности пайки все параметры каждой волны должны быть регулируемыми. Поэтому установки для пайки двойной волной должны иметь отдельные насосы, сопла, а также блоки управления для каждой волны.


Пайка двойной волной припоя

Рис. 1 - Пайка двойной волной припоя

Пайка ИК-излучением

Основным механизмом передачи тепла, используемым в установках пайки с ИК-нагревом, является излучение. Передача тепла излучением имеет большое преимущество перед теплопередачей за счет теплопроводности и конвекции в описанных ранее методах, так как это единственный из механизмов теплопередачи, обеспечивающий передачу тепловой энергии по всему объему монтируемого устройства. Остальные механизмы теплопередачи обеспечивают передачу тепловой энергии только поверхности монтируемого изделия. В отличие от пайки в парогазовой фазе, в процессе пайки с ИК-излучением скорость нагрева регулируется изменением мощности каждого излучателя и скорости движения транспортера с коммутационными платами. Поэтому термические напряжения в компонентах и платах могут быть снижены посредством постепенного нагрева микросборок. Основным недостатком пайки с ИК-нагревом является то, что количество энергии излучения, поглощаемой компонентами и платами, зависит от поглощающей способности материалов, из которых они изготовлены. Поэтому нагрев осуществляется неравномерно в пределах монтируемого устройства. Пайка кристаллоносителей без выводов или с J-образными выводами может оказаться невозможной в установках с ИК-нагревом, если компонент непрозрачен для ИК-излучения.

В некоторых установках для пайки с ИК-нагревом вместо ламп ИК-излучения применяются панельные излучающие системы. В этом случае излучение имеет намного большую длину волны, чем излучение традиционных источников. Излучение такой излучающей системы не нагревает непосредственно микросборку, а поглощается технологической средой, которая в свою очередь передает тепло микросборке за счет конвекции. Этот способ пайки устраняет ряд недостатков, присущих традиционной пайке с ИК-нагревом, таких, как неравномерный прогрев отдельных частей микросборки и невозможность пайки компонентов в корпусах, непрозрачных для ИК-излучения. Панельные излучатели имеют ограниченный срок службы и обеспечивают намного меньшую скорость нагрева, чем традиционные источники ИК-излучения. Однако при их использовании может не потребоваться технологическая среда из инертного газа.


Пайка ИК-излучением

Рис. 2 - Пайка ИК-излучением

Установка состоит из корпуса 1, внутри которого расположено несколько зон нагрева, в каждой из которых поддерживается заданный тепловой режим. В первой и второй зонах производят постепенный предварительный нагрев изделия 2 с помощью плоских нагревателей 3. Пайку производят в третьей зоне быстрым нагревом объекта выше температуры плавления припоя с помощью кварцевых ИК ламп 4, затем объект охлаждают с помощью устройства 5. Печатные платы транспортируются через установку на ленточном (обычно сетка из нержавеющей стали) конвейере 6. Режимы работы нагревателя и скорость конвеера регулируются с помощью микропроцессорной системы 7, температурный профиль вдоль установки отображается в графической и цифровой форме на экране дисплея 8. Характеристики температурного профиля, т. е. значения температур в каждой зоне , возможно изменять в широких пределах, также возможно иметь библиотеку типовых режимов оплавления для печатных плат различных типоразмеров.

Пайка в парогазовой фазе (ПГФ)

Пайка расплавлением дозированного припоя применима только к микросборкам с поверхностным монтажом. Она значительно отличается от выше описанных методов. Процесс начинается с нанесения способом трафаретной печати припойной пасты на контактные площадки коммутационной платы. Затем на поверхность платы устанавливаются компоненты. В ряде случаев припойную пасту просушивают после нанесения, с целью удаления из ее состава летучих ингредиентов или предотвращения смещения компонентов непосредственно перед пайкой. После этого плата разогревается до температуры расплавления. В результате образуется паяное соединение между контактной площадкой платы и выводом компонента. Такая техника пайки применима к коммутационным платам без монтируемых в отверстия компонентов, т. е. с набором только поверхностно монтируемых компонентов любых типов.

Метод пайки в парогазовой фазе является разновидностью пайки расплавлением дозированного припоя, в ходе которой пары специальной жидкости конденсируются на коммутационной плате, отдавая скрытую теплоту парообразования открытым участкам микросборки. При этом припойная паста расплавляется и образует галтель между выводом компонента и контактной площадкой платы. Когда температура платы достигает температуры жидкости, процесс конденсации прекращается, тем самым заканчивается и нагрев пасты. Повышение температуры платы, от ее начальной температуры (например, окружающей среды перед пайкой) до температуры расплавления припоя, осуществляется очень быстро и не поддается регулированию. Поэтому необходим предварительный подогрев платы с компонентами для уменьшения термических напряжении в компонентах и местах их контактов с платой. Температура расплавления припоя также не регулируется и равна температуре кипения используемой при пайке жидкости. Такой жидкостью является инертный фторуглерод

Существуют два типа установок для пайки в парогазовой фазе: с применением одной либо двух рабочих жидкостей. В первых установках для пайки в ПГФ применялись две рабочих жидкости (рис. 3), при этом использовались обычно несколько установок пайки в составе производственной линии. С целью предотвращения утечки паров дорогого фторуглерода и припоя поверх основной технологической среды из инертного фторуглерода создавалась дополнительная технологическая среда из более дешевого фреона. Основной недостаток этих установок состоял в том, что на границе двух технологических сред происходило образование различных кислот. Поэтому для защиты коммутационных плат (защита коммутационных плат необходима в первую очередь от разрушающего действия кислот на материал коммутации (химическая, а затем электрохимическая коррозия). Кроме того, рабочая часть контейнера установки пайки в ПГФ должна изготовляться из коррозионностойкого материала, что отражается на стоимости такого оборудования) требовались системы нейтрализации кислот.


Пайка в парогазовой фазе с двумя технологическими жидкостями

Рис. 3 - Пайка в ПГФ с двумя технологическими средами

Установки для пайки с двумя рабочими жидкостями оказались непригодны для линий сборки электронной аппаратуры. Поэтому в 1981 г. стали выпускаться установки для пайки в ПГФ, встраиваемые в технологические сборочно-монтажные линии. Такие установки имеют относительно небольшие входное и выходное отверстия, позволяющие реализовать систему с одной технологической средой (рис. 4). Приведенная на рис. 4 конструкция обеспечивает возможность включения установки в состав технологической линии.


Пайка в парогазовой фазе с одной технологической жидкостью

Рис. 4 - Пайка в ПГФ с одной технологической жидкостью

При использовании установки для пайки в ПГФ таких компонентов, как чип-конденсаторы и чип-резисторы, может возникнуть проблема, известная как "эффект опрокидывания компонента". Причина опрокидывания компонентов до конца не изучена, и универсальных средств для избежания этого в настоящее время не существует. Необходимо варьировать параметры процесса пайки до тех пор, пока не прекратится опрокидывание компонентов.

Лазерная пайка

Лазерная пайка (пайка лучем лазера) не относится к групповым методом пайки, поскольку монтаж ведется по каждому отдельному выводу либо по ряду выводов. Однако бесконтактность приложения тепловой энергии позволяет повысить скорость монтажа до 10 соединений в секунду и приблизиться по производительности к пайке в паровой фазе и ИК излучением.

По сравнению с другими методами лазерная пайка обладает рядом следующих преимуществ. Во время пайки печатная плата и корпуса элементов практически не нагреваются, что позволяет монтировать элементы, чувствительные к тепловым воздействиям. В связи с низкой температурой пайки и ограниченной областью приложения тепла резко снижаются температурные механические напряжения между выводом и корпусом. Выбор материала основания не является критическим. Кратковременные действия тепла - 20...30 мс, резко снижаютсятолщина слоя интерметаллидов, припой имеет мелкозернистую структуру, что положительно сказывается на надежности ПС. Установки лазерной пайки могут быть полностью автоматизированы, при этом возможно использовать данные САПР для печатных плат.

Возможна пайка плат с высокой плотностью компоновки элементов, с размерами контактных площадок до 25 мкм, без образования перемычек на соседние соединения или их повреждения.

При использовании хорошо просушенной паяльной пасты выполненные с помощью лазерной пайки ПС не образуют шариков припоя или перемычек, в результате чего отпадает необходимость применять паяльные маски.

При использовании лазерной пайки нет необходимости в предварительном подогреве многослойной печатной платы, что обычно необходимо делать при пайке в паровой фазе для предотвращения расслоения платы. Не требуется также создавать какую-либо специальную газовую среду. Процесс пайки ведется в нормальной атмосфере без применения инертных газов.

Page copy protected against web site content infringement by Copyscape
Пайка К содержанию Первый раз с паяльником
Новости:




 

copyright © 2003-2017 naf-st.ru, info@naf-st.ru
При полном, либо частичном цитировании материалов сайта naf-st.ru ссылка (для интернет изданий гиперссылка) обязательна!!! Будьте взаимовежливы!

Хостинг «Джино»
Карта сайта
Поиск по сайту
Помощь
Новости
Обратная связь
Карта сайта
Поиск по сайту
Помощь
Новости
Обратная связь